Queueing Systems 20 (1995) 37-59 37
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In this paper we review and exte nd the effective bandwidth results of Kelly [28], and
Kesidis, Walrand and Chang [29, 6]. These results provide a framework for call
admission schemes which are sensitive to constraints on the mean delay or the tail
distribution of the workload in buffered queues. We present results which are valid
for a wide variety of traffic streams and discuss their applicability for traffic manage-
ment in ATM networks. We discuss the impact of traffic policing schemes, such as
thresholding and filtering, on the effective bandwidth of sources. Finally we discuss
effective bandwidth results for Brownian traffic models for which explicit results
reveal the interaction arising in finite buffers.
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1. Introduction

One of the key ideas behind broadband integrated services digital networks
(BISDN) using the asynchronous transfer mode (ATM) is the statistical multi-
plexing of heterogeneous packetized traffic streams and messages via switches and
communication links. In order for streams to share resources one must guard
against traffic fluctuations by inserting buffers. To ease the task of managing such
a network it is desirable to obtain a circuit-switched model for which relatively
simple call admission, routing, and network planning algorithms are available.
For example, suppose a collection of sources, n; of typej € J which require a band-
width oy, share a link with capacity ¢. One can easily check if bandwidth is available
by considering whether
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Unfortunately, the interaction of traffic in networks is typically not linear in the
number of sources nor is it usually decoupled across the different types of streams.
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There exists, however, a remarkable collection of results for multi-type
streams sharing a buffered queue for which an effective bandwidth and the accom-
panying linear constraint can be found such that particular criteria are satisfied.
The goal herein is to discuss the structure required and limitations of such results for
different criteria (quality of service), such as mean delay and overflow probability,
for multi-class queues.

This problem has recently received much attention; in fact as of the writing of
this paper much work has appeared. Below we provide a brief review of related
work as a guide to the interested reader; a more complete account can be found
in Whitt [34]. Among the first studies of effective bandwidths is an analysis of
buffer-less systems by Hui [25]. The paper of Kelly [28], discussed herein, reported
the first results for buffered systems subject to either mean delay or tail constraints.
The work of Guerin, Ahmadi and Naghshineh [23] discussed the manner in which
these methods could be incorporated in a framework for resource management.

Effective bandwidth results have been obtained via spectral expansions for
Markov fluid traffic models by Gibbens and Hunt [21] and Elwalid and Mitra
[17]. These methods have the advantage of providing explicit solutions to multi-
plexed systems and thus an understanding of the approximate nature of large
buffer asymptotics.

An alternative approach has been to investigate large buffer asymptotics via
the theory of large deviations. The work of Kesidis et al. [29] and Chang [6],
identified under some rather general conditions the existence of effective band-
widths. The work of Glynn and Whitt [34, 22] independently encompasses much
of the material herein and provides several additional clean results. Finally a novel
result by Duffield and O’Connell [15], considers the case of traffic streams with long
range correlations, or self-similar structure, where the scaling and results differ from
those discussed in this paper. The work of Doshi [14] showed that by guaranteeing a
performance constraint for a heterogeneous multiplexer one really makes weak (if
any) promises to individual users. This important point led the further work by
de Veciana and Kesidis [12] proving effective bandwidth results for systems using
general processor sharing service policies and segregating i.i.d. traffic streams. An
extension to feed-forward networks, via a study of the input-output properties of
queues, is proposed in de Veciana, Courcoubetis and Walrand [11]. In addition
recent numerical as well as analytical studies, e.g., K. Rege [31], G. Choudhury et
al. [7] and Botvich and Duffield [4], show that asymptotic effective bandwidth
results can be either optimistic or conservative depending on the nature of the
arrival streams. These and other studies indicate that caution is warranted in using
the effective bandwidth concept.

In this paper we begin by reviewing effective bandwidth results for criteria
such as mean packet delay or the probability of large delays first considered by
Kelly [28]. We discuss a simple extension of this result to a system with prioritized
service and multiple average delay constraints.

Next, in section 3, we extend the approach of Kesidis et al. [29] and Chang [6]
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both of whom used large deviations to obtain effective bandwidths where the
criterion is the likelihood of a large workload or queue length in a discrete-time
queue. We give a direct proof of this result including a large class of stationary
ergodic mixing or Markov sources as well as random possibly dependent service
times. Some novel examples where these results apply, such as randomized service
priority, are presented. In addition we discuss the nature of streams where such
results fail.

Packet admission policies which are optimal in the sense of reducing the
effective bandwidth of sources are considered in section 4. Among memoryless
policies with the same throughput, we show that thresholding is optimal for i.i.d.
sources, but not necessarily optimal in general. While filtering the rate of a traffic
stream would appear to reduce fluctuations and thus improve performance, a
simple example shows that the effective bandwidth of a filtered stream remains
unchanged unless a fraction of the traffic is rejected, i.e., the filter does not have
unit gain. Further studies of the effective bandwidth at the output of a discrete-
time queue and leaky bucket explicitly show how such systems can in fact reduce
the effective bandwidth of a traffic stream at the expense of further delays, see de
Veciana et al. [11, 10].

Finally in section 5 we discuss related approximations; namely, heavy traffic
limits for which explicit solutions can be obtained exhibiting the effect of finite
buffers.

2. Classical techniques

We begin by reviewing a result for a multi-class buffered resource of Kelly
[28]. He considers a system with independent sources, say n; streams of type
J € J. For sources of type j, bursts of traffic arrive as a Poisson process with rate
v;; the length of each burst is arbitrary with mean u; and variance of The length
of a burst is the required service time; the model corresponds to a first-come first-
serve M/GI/1 queue. Note at the outset that this is not a particularly good model
for ATM networks in which the packet size (and hence the service time) is fixed
and where arrivals are highly correlated; it does however have some merit in a
setting with variable length packets such as Frame Relay networking.

Using the Pollaczek—Khintchine formula one can find the distribution of the
workload in the system and in particular the mean delay before service ED of typical
customers:
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Kelly [28] considers a delay constraint ED < d which by rearranging terms gives the
following linear constraint:

anaj(d) <1, where o;(d) = 1 (,uj +arj2) .
jed "2

We call a(d ) the effective bandwidth of a call of class j subject to a bound, d, on the
mean delay before service.

The trivial extension to constraints on the expected queue length or the mean
sojourn time (EW) is not fruitful. For example, in order to guarantee EW < w it
suffices to insure ED + ES < w where ES denotes the mean service time of
customers. Thus a linear constraint is obtained by simply letting d = w — ES in
the formulas above. Note, however, that ES depends exphcltly on the proportion
of calls of each type, hence only by assuming this mix is approximately constant
(or w > ES) can we obtain a satisfactory effective bandwidth for the mean sojourn
time. From a user’s pomt of view, it suffices for the network to guarantee a mean
delay before service since the user can then compute his own expected sojourn
time. This simple case exemplifies the fact that in obtaining effective bandwidth
formulae it is essential to select the criterion carefully.

Example 1

Figure 1 shows approximate admissible regions of operation for two types of
sources sharing a 150 Mbps line. Type 1 sources have a mean traffic rate of 1 Mbps;
the packets arrive accordmg to a Poisson stream, have a mean service time
w1 =283 ps and of/u} =2. Type 2 sources have a mean traffic rate of 10 Mbps
with p; = 56.5 us and al/,u,l = 1. The graph on the left shows the admissible
number of sources when the mean delay before service is less than d = 0.1 ms.
The graph on the right shows the admissible region when the mean sojourn
time is constrained to be less than w = 0.1ms. As seen in fig. 1, a constraint
on the mean sojourn time can lead to a nonlinear boundary which is, however,
approximately linear for a large range of traffic mixes.

ED<.1 msec . EW<.1msec

Fig. 1. Effective bandwidths and admissible regions.
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In practice one might tradeoff delay characteristics for some types of traffic
(voice and video) with that of others (e.g., data). Thus it is interesting to consider
effective bandwidths for priority service policies; below we consider one such
example.

For simplicity we discuss a 2-class M /GI/1 model with a non-preemptive
service policy giving high priority to Type 1 traffic. Using Little’s result one obtains
the expected delay before service of the two types of traffic, ED, and ED,, as a
function of the traffic statistics and the number of sources of each type (see
Walrand [33, p. 128]):

2 2
> mypd + o) > ny(d +od)
ED, = =l , ED, = = .
I 2(1 — vy ) 2 2
2{ 1~ mivip | (1 —nyvypy)
i=1

Now suppose we require that ED, <d, and ED, < d,, then the following
conditions need to be satisfied:

may(dy) + mlaa(d) —vapo] < 1,
may(dh) + may(ds) < 1,

where d, = (1 — vy py) and ;(-) is as defined above.

This setup exhibits interaction among traffic streams with different priorities.
As might have been expected, the delay constraint on high priority traffic gives rise
to a linear constraint where the effective bandwidth of low priority traffic is reduced.
Indeed, since Type 1 packets have priority they will only incur extra delays if on
arrival a Type 2 packet has begun service. Since the probability of this event is
linear in the number of low priority sources, the first constraint above is linear.
The delay constraint on low priority traffic also results in a linear relationship,
but with a reduced bound d, which unfortunately depends on the traffic intensity
of Type 1 traffic. In principle this permits structured multiplexing of traffic streams
subject to various mean delay constraints.

Example 2

Consider our previous example, but let the service policy give priority to
Type 1 traffic, rather than the first-in-first-out policy assumed above. Suppose we
constrain the mean delay before service for high priority traffic to be less than
dy = 0.1ms while delay constraints for Type 2 traffic are relaxed to d; = 10 ms.
The admissible region defined by the above constraints is shown in fig. 2.

In practice one might further consider imposing a loss (or statistical delay)
constraint on high priority traffic while maintaining an average delay constraint
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n2 E D.I <.1 msec

ED2< 10 msec

.....
",
",

104 115

Fig. 2. Admissible region for priority service,

for low priority traffic. The effective bandwidth results for bounds on the tail
distributions considered in the sequel can be used to control performance measures
related to the tail distributions in a queueing system. Ideally a bound on loss for
high priority traffic coupled with an average packet delay constraint for low
priority traffic will define a region where we might wish to operate a multi-service
system.

We now turn to Kelly’s [28] effective bandwidth result for M/GI/1 and D/G/1
queues where a constraint of the type

lim lIog P(W >B)< -6 (1)
B—oco B
is to be satisfied. In this expression B represents a large buffer size under which it is
desirable to maintain the workload W and é represents a statistical constraint on the
tail distribution of the workload.

We first introduce a general result on the tail distribution of a GI/GI/1 queue,
see Feller [18]. Let A denote a random variable distributed as an inter-arrival period,
§'a random variable distributed as a service time, and suppose there exists a solution
kto

Eexp[k(S — 4)] = 1. (2)
It can be shown that the distribution of interest is asymptotically exponential, i.e.,

Blim P(W > B) exp [kB] = C, (3)

where C is a constant that can be computed with some difficulty, see Iglehart [26].
Kelly used this result to obtain effective bandwidths for both M/GI/1 and
D/GI[1 queues subject to the tail constraint in eq. (1). As above, for each typej € J
let 4; be distributed as an inter-arrival, i.e., either exponential with parameter v; or
deterministic, and let S; denote the service time or batch arrivals per slot.
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Referring to egs. (2) and (3), note that the tail constraint in eq. (1) will be
satisfied if we guarantee that k > § and hence by monotonicity that

Eexp[6(S —4)] < L. (4)

For the M/GI/1 model, where the aggregate inter-arrival A is exponential with
parameter v =) ;.; m;1; and S is distributed as S; with probability p; = v, /v,
Kelly shows that eq. (4) becomes

S mey(8) <1, where a(6) =§ (exp [A; (6)] — 1),
jer

where A;(6) = log Eexp [6S]] is the log-moment generating function of S;. For the
D/GI/1 model, A is a deterministic time slot, say the time to serve one unit of work,
and § be distributed as the aggregate work for the sources sharing the queue
arriving during a time slot. The constraint in eq. (4) then becomes

A (S
E nia;(6) <1, where o;(6) = "é ).
je7

Scaling the service rate by a factor of ¢ modifies the above inequality to

Z nja«j(ﬁ) &2

jed

which parallels the bandwidth constraint considered in the introduction.

Note that the assumption of Poisson or slotted arrivals was necessary in
dealing with the multiclass setting although the asymptotics on which the result
is based can be obtained for GI/GI/1 and even SM/GI/1 (SM: semi-Markov)
queues, see Karlin and Dembo [27]. The main problem in extending Kelly’s
argument is that a superposition of renewal or semi-Markov traffic streams usually
will not preserve these properties.

To summarize, the effective bandwidth characterization gives a simple
relationship which might be used for call management schemes which are sensitive
to the tail distribution or mean workload in buffers. However, in the present
setting, they only hold for a restricted collection of sources. Finally, note that
Kelly’s D/GI/1 model would be a reasonably good model for an output buffer in
an ATM switch if dependencies in the arrival processes could be handled; this is
one of the goals of the next section.

3. Large deviations

In this section we will establish effective bandwidth results for a wide class of
sources subject to constraints on the tail probability of the workload or the buffer
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occupancy in a discrete-time queue. The result is drawn from Kesidis et al. [29] and
Chang [6]. We present a direct proof via large deviations and discuss some examples
of randomized service.

We begin by reviewing the statement and possible requirements for large
deviation results to hold. For a complete reference on the subject see Dembo and
Zeitouni [13]. A sequence of measures {y,} on R will satisfy a Large Deviation
Principle (LDP) with good rate function, I(+), if for every closed set F,

lim supl log p,(F) < — tgg I(x),

n—eo N

and every open set G,

ey .
a— o - -
WBLT, lom i) 2 — Iag 1),
and {x: I(x) < a} is compact for & < co. We only consider the setting where {u.}
denote the distributions of the partial sums n~'S, = n~! S2_ | X, for a sequence of
real-valued random variables {X,}. We then say that {X,,} satisfies an LDP with
good rate function /(-). Below we briefly discuss when such bounds do indeed
hold.

The Gértner—Ellis Theorem establishes the existence of an LDP with convex
good rate function for a large class of sources. The requirements are that:

1. The limits A(6) £ lim,_, (1/n) log Eexp [6S,] exist (possibly infinite) for all

8 ecR; '

The origin is in the interior D of the effective domain Dy £ {8 : A(6) < o}

of A(+);

3. A(-) is differentiable throughout Df and steep, i.e., lim, _, o, |dA(6,)/d6] = oo
whenever {6,} is a sequence in D} converging to a boundary point of
Dj.

b

Under conditions 1-3 an LDP holds with the good rate function given by the
convex dual A*(-) of A(:):

Az} = sgp [0x — A(8)].

This result applies to i.i.d. sequences with Ee?*' < oo for all §, which corresponds to
the original large deviation estimate of Cramér. The result also applies to sequences
with weak dependencies. For example, (random) coordinate functions of Markov
chains satisfying strong uniformity conditions on the transition kernel and tails
will satisfy an LDP. For stationary sequences satisfying appropriate mixing and
tail conditions similar results hold.
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THEOREM 3.1 [see Chang [6]]
Let {X,} be a stationary ergodic process with EX,, < 0, which either satisfies
an LDP with convex good rate function I(-), such that for all # < co

< 00,
n—oo 1

A(6) = lim llogEexp !9 > x
i=l

and A*(-) is strictly convex or satisfies the requirements for the Gértner—Ellis
Theorem. Then the Lindley process

Wn+1 = [Wn + Xu]+

has a stationary distribution, say that of a random variable W, and for § > 0,

ALS) £ 0 Tim =

< —o.
£ Aim BlogIP(W>B) < -4

Proof
The stability condition, EX, < 0, guarantees the existence of a stationary
distribution, see Loynes [30]. In particular, let

wWr'=0, n<-—m,
nn-:—l = [H/;:n +Xn]+a R 2 —m,

then the distribution of Wy" converges monotonically to that of . Let S; = 0 and
S, =S.il, X; for n > 1. Recall that W{" is given by

Wi = max S,. (5)

D<n<m
Since the sequence {X,} is stationary and ergodic, the limits
oy
lim - logEexp[6S,] = A()
n—oo 1

must exist. Moreover, by theorem 4.5.10 in [13], or directly from the Gértner—Ellis
Theorem, the rate function is in fact the convex dual of A(-), i.e.,

1I(a) = A°(a) = sup [P~ A(®)].

Thus for € > 0 there is an n, such that

Vn > n,, Eexp|6S,] < exp[(A(d) + €)n],
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and it follows from eq. (5) that

Eexp [Wy"] < Zm: Eexp[0S,] < i: Eexp [0S,] + Z exp [(A(8) + e)n].
n=0 n=0

n>n,

Now, since the first sum is bounded, if A(8) < —e, we have that Eexp [0Wy"] =
C <oo, and it follows by the Chebyshev inequality that P(Wg > B) <
Cexp [—6B] so in fact

—
(=)
p—

; 1
lim sup 5 P(W > B) < -0 aslongas A(f) <0.

B—oco

On the other hand note that P(W > B) > P(S,, > B), so by letting n = | B/c|
for a > 0 we find

A*(e)
a ?

ol 1 s
liminf — log P(W > B) > — limmf1 logP(igﬂ > a) = -
B—oc B @ n—oo H n
where the last inequality corresponds to the large deviations lower bound. We may
select o giving the tightest bound '
A(a)

| . ;
l.lgnlloléfg logP(W > B) > ~au§t;) . —k wherein fact A(k)=0. (7)

Before arguing that A(k) = 0, we note that the optimizer o* of eq. (7) is well defined.
Indeed if A(f) < co then limyy|_, o A*(x)/]x| = oo, S0 a* above makes sense (see
Dembo and Zeitouni [13, p. 34]). Also note that the strict convexity of A*(-) ata”
is equivalent to the differentiability of A(-). Alternatively if the Girtner—Ellis
theorem is in force, then the steepness and differentiability conditions guarantee

A(B)

EX <0 [,

Fig. 3. Convexity of log-moment and asymptotic rate.
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not only that «" makes sense, but also the strict convexity of A*(-) when the random
variables are real-valued (see Ellis [16, p. 224]).
The first order optimality conditions require that
are’) L A'(e”) _dA(a")
o a =A(a"), so k= = da

Recall that A(-) and A*(-) are convex duals, and consider A(k) = sup, [Me — A*(\)].
Once again by differentiating we find that the supremum is attained at some \* such
that dA"(A\")/da=k. Our convexity requirement and the previous optimality
criterion imply that A" =o". Putting these results together we find that
Alk) =o'k — A*(a*) = 0.

Finally note thatif § > 0 and A(6) < 0 then by convexity it follows that § < k,
see fig. 3, so the result follows from the upper and lower bounds, egs. (7), (6). [

Given this result it is now clear that an effective bandwidth result will hold in
a multi-class setup as soon as A(§) < 0 is linear across the number of sources.

COROLLARY 3.1

Consider a collection of independent sources, n; of each type j € J, with
slotted arrival processes {47}, each satisfying the conditions in theorem 3.1.
Suppose they share a deterministic buffer with rate c according to a work
conserving service policy. Then the following effective bandwidth result holds:

. 1)
Y moy(8) <c where a;(5)= 5 © jim ZlogP(W > B) < -4,

jed

and where W denotes the stationary workload.

Proof
Each source satisfies a large deviation principle where the limiting
log-moment generating functions

. 1 <
nl_uptgoElc)g].!i‘.exp l:@;A,-J = A;(0),

exist and the rate function for each source is Aj (o)) = supg[f; — A, (8)]. Let A4,
denote the aggregate arrivals at time » and X, = A, — ¢ the net arrivals at this
slot. Using the independence of the sources we find that the limit
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¢ 3 &

lim - logEexp {9 Sox| =Y mn8) - cf=A0)

e = jed

exists, and by the contraction principle and convexity of the rate functions, the
aggregate satisfies a large deviation principle with good rate function given by

(see Dembo and Zeitouni [13, p. 110]):

()= _ inf (e,
( ) zieJ”jﬂj=a+c; 4 J( J)

The corollary follows from the previous theorem and the independence of the
sources,
A;i(8)
AF)<0e ) mL—"<c O
( )— o g 6 —

The usefulness of this result is predicated on being able to compute or
estimate (possibly on-line) the effective bandwidth of a source. For a summary of
some analytical formulae that are available, see Kesidis et al. [29] and Courcoubetis
and Weber [8]. These include the usual i.i.d. sources, as well as Markov modulated
fluids or Poisson processes and Gaussian processes.

One can also extend Kelly’'s M/GI/1 model to sources with possibly
dependent service times.

COROLLARY 3.2

Consider a collection of independent sources, #; of each type j € J, such that
a source of type j has Poisson packet arrivals (rate v;) with possibly dependent
associated service times {S;} satisfying a large deviation principle. Suppose they
share a buffer with any work conserving policy. Then the following effective
bandwidth result holds:

; 1
S myay(8) < 1 with a(6) =5(;; (explay ()] — 1) & Jim = logP(W 2 B) < =5,

jed
where W denotes the stationary workload ahead of a typical packet.

Proof

Once again we use our main theorem where X; = S; — 4;, i.e., 4; denotes the
aggregate inter-arrival time, so it is Poisson with rate v = >,y n;v; and S; is the
work corresponding to the ith arrival which corresponds to a particular stream
of type j € J with probability v;/v. As in the previous corollary, the condition
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.1 ;
A(8) = HIEEO P logEexp [5 ; (S; — A:‘)} <0,

gives the desired result. Since inter-arrival times are exponential and independent,
we find that

lim L logEexp

ft—oo F1

52,4] log{ +5}’

i.e., the log of the Laplace transform for an exponential inter-arrival with rate v.
After some work the limit corresponding to the arriving work can also be
simplified to,

I i
nlin;o = logEexp {6 ; S,} log {Z n; Zexp[A; (6)]J

jeJ

where A;(6) = lim,_ (1/n)Eexp [6 Y1, S/]. The condition A(§) < 0 can then be
rewritten as

ané (exp[A;(8)] —1) < 1. O

JjeJ

Note that the two corollaries are essentially the same. Indeed the asymptotic
log-moment generating function of incoming work per unit time for a stream of type
J 1s that of a compound Poisson process, i.e.,

AS (8) = log [ev,-{exp [r\;(é)l-l)]l

Thus assuming we serve at unit rate the effective bandwidth result in corollary 3.1
applies with

0 (5) = L0 Y (exp (5] - 1)

Until now we have focused on modeling the variability in sources while
assuming deterministic service processes. The generality of theorem 3.1 allows us
to consider randomness in the service process and thus to obtain constraints which
are sensitive not only to source fluctuations, but also to fluctuations at the server.
For example, corollary 3.1 is easily extended to the case where the service process
1s independent of the arrivals and satisfies a large deviation principle. In this case
we find the same effective bandwidths obtained previously, but the capacity ¢ is
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modified to reflect the randomness in the server as well as the tail constraint. We
present two simple examples of servers with slotted arrivals which should elucidate
this and other applications.

Consider a multi-class slotted model where the service rate is no longer deter-
ministic. Suppose for example, that due to interference with concurrent processes
the output bandwidth is modeled by an auto-regressive Gaussian process centered
at c:

Cpi1 =aC,+ Npyq, where |a] < 1,

and N,, is a white Gaussian process with power 2. It follows from the Girtner—Ellis
theorem that C, satisfies a large deviation principle. In fact the asymptotic
log-moment generating function of the service process {c¢ + C,} is

6*c*
A(8) =0+ —
(see Bucklew [5, p. 22]). In order to satisfy a é constraint on the tail we need only
require (see theorem 3.1):

anaj(é) <c—4§

I 2(1 —a)*

The risk associated with fluctuations in the service results in a reduced service
capacity which depends in a natural way on the variance of the noise and the
autocorrelation between noise samples.

Suppose that in addition to multi-class sources we specify high and low
priority traffic types, J, and J; respectively, which are queued in segregated
buffers. In order to reduce large delays for high priority streams, we choose a
randomized service policy which is biased towards high priority packets with
probability p, > 0.5 > p;. Thus at each time slot the server flips a biased coin
selecting the priority type to be processed at rate ¢. Note that this policy is not
work conserving, i.e., service may be assigned to a priority with no work to be
done. We obtain effective bandwidth constraints for high and low priority traffic:

3 ey (8) < — log (p; + prexp [—6c])
] S

JEJ, 6

1 —§
5 s Og(p;,+péexp[ CJ)1
JeS

where o;(-) denote the effective bandwidths obtained for sources obtained in
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corollary 3.1. Since these constraints are decoupled we can envisage choosing
different tail constraints (§) for the two priorities.

Given the rather abstract conditions for the existence of effective bandwidths
presented above, one might ask which types of sources will not have an effective
bandwidth. This question is closely related to the manner in which overflows occur
in queues, see Anantharam [1]. For a GI/GI/1 queue in which the distribution of
X = 8§ — 4 (difference of the service time and inter-arrivals periods) has an
exponential tail, one can show that overflows in asymptotically large buffers will
occur as an accumulation of traffic over a large period of time, i.e., a large deviation
in the empirical net input rate. If however X does not have an exponential tail, for
example

EX* < oo and there is a ¢ > 0 s.t. P(X > x) = x 7L(x),

where L(x) is a slowly varying function, delays will build up suddenly, e.g., when a
single customer with a huge excess service time arrives rather than as long term
accumulation. This type of behavior does not fall in the traditional large deviations
framework. Similarly the long range dependencies in self-similar traffic models are
such that overflow asymptotics need to be viewed on a different time scale, leading
to modified tail behavior, see Duffield and O’Connell [15]. Traffic streams without
sufficient randomness are excluded from our framework, however, Chang [6] has
developed an interesting point of view unifying stochastic and deterministic sources
via the notion of envelope processes.

4. On cell admission and filtering

It is reasonable to ask how packet admission policies might decrease the
effective bandwidth of a source. Consider a single arrival process {4, } and memory-
less policies /(+), which reject (or set to low priority) some fraction of the arrivals. If
A, packets arrive at time n, we allow #(4,,) to go through unchanged and reject or
lower the priority of the remaining 4, — h(A4,). Intuitively it is plausible that a
threshold function 4*(a) = min[q, T], for some T, may be optimal among some
collection of policies. In fact we will show that this is true if we consider all such
policies with the same throughput g and if arrivals are i.i.d. but may not hold
otherwise. The following result was inspired by a problem concerning optimal
re-insurance of policies, see Asmussen [2, p. 287].

PROPOSITION 4.1

Suppose {A4,} is -an ii.d. sequence satisfying a large deviation principle.
Consider all memoryless rejection policies, A(-), with the same throughput p, i.e.,
such that Eh(A4,) = p <EA,. Let A"(a) = min [a, T], where T is determined by
Eh*(A,) = p. Among these policies, the one which results in the smallest effective
bandwidth is A*.
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Proof

Note that {4(4,)} and {#*(4,)} also satisfy large deviation principles where
Ay(0) = logEexp [0h(4p)] and A;(8) = logE exp [64*(A,)] are the corresponding
log-moment generating functions. As seen in corollary 3.1, the effective bandwidth
of these sources will be a;(6) = A(6)/6 and ay.(§) = Ay (6)/6, respectively. We
wish to show that «;(8) > a;-(8), so it suffices to show Ap(6) = Ay (8). Since
e > 1+ z, by letting z = 8[h(4,) — h*(Ap)] we have that

eﬁ:‘i{Ag) > Eﬁk'(Ag} +6e§fl‘(A0)[h(Ao] _ h*(Ag)] > e6h"[A{,) _i_é-e&T[h(An} _ h*(ﬁ‘.g)],

where we use the fact that if (A4y) > h*(4,) then h*(A4y,) = T. Now taking expecta-
tions on both sides we have that Ee5#(0) > E ' (4o) gince E[h(A4p) — h™(A4y)] = 0,
and it follows that A,(8) > A (6). O

This result is perhaps not as surprising as the observation that it will not hold
for arbitrary sources. When there are dependencies in the arrival process the optimal
h(-) may reflect the dynamics of the process. Before considering an example of such
a source, let us roughly examine where the previous argument fails.

Consider once again / and 4*, with the same throughput 4 and an arbitrary
source {4;} satisfying a large deviations principle. As seen above, it would suffice to
show that in fact A,(6) > Ay (6), where these are now the asymptotic log-moment
generating functions, e.g.,

o 4
Ay(8) = lim ~logEexp [5 ; h(Ai)J .

To roughly understand the behavior of this limit, suppose we could show a central
limit result for the given /:

zn: ;I(A,) — nu
i=] \/ﬁ

Thus i, h(4;) is approximately normally distributed, say N (n, nop). Taking the
limit and log-moment generating function of this distribution, we obtain

— N(0,07).

0*32,52
2 1

Au(6) = b+

and of course the counterpart for A*,
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reject

"o,
it

admit

oA, h(An)

Thus 4" would be optimal if for all other 4 we had gy 2 oy. The problem is that oy, is
a function of both /(-) and the dependencies in the source. The goal of an optimal
policy would be to reduce the asymptotic variance.

The Markov fluid source shown in fig. 4 is an example of a traffic stream for
which the threshold policy is not optimal. The amount of work arriving in each slot
will be the label of the state, i.e., 0, 1 or 2. The steady state distribution of this chain
is (%,%,41 ), so the mean arrival rate is 1. We will consider memoryless rejection
policies A(+) with a throughput of 1 | so that 34(1) +4h(2) = 1. Among these there
exists one threshold policy which we denote by #"(a) = min [a,2]. The effective
bandwidth of this source can be computed to be

ou(s) = PECRIBELY

effband

Fig. 5. Effective bandwidth versus tail constraint and admission policy.
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h(A.)

Geometric ( .5)
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Fig. 6. Sample paths for optimal policy.

where sp [¢(6)P] denotes the spectrum of the product of the transition matrix, P,
and a diagonal matrix ¢(§) with components (1,exp [5%(1)], exp [64(2)]). Figure 5
shows the effective bandwidth for a range of tail constraints & over all memoryless
policies with a throughput 1; they are parametrized by the value of A(1), where
0 <h(1) <1 and A(2) = 2[1 — h(1)]. Clearly A(1) =0.5(h(2) = 1) is the optimal
admission policy since the effective bandwidth is minimal and equal to the
throughput 0.5. This somewhat surprising result becomes obvious when one con-
siders the sample paths of the source when this policy is used, see fig. 6. Indeed,
the arrivals alternate almost deterministically between the levels 0, 0.5, 1, staying
at levels 0 and 1 for a single time slot and at 0.5 for a geometrically distributed
number of slots. The deviant behavior for this source may modify the amount of
time spent at state 0.5, but this will not significantly affect the average traffic rate
of the stream. This explains why the effective bandwidth remains constant for all
constraints 6.

Although the notion of optimality, in the sense of minimizing the effective
bandwidth for a given throughput, is reasonable, in practice one would further
like to reduce the number of correlated losses. Indeed, while some sources (e.g.,
packetized voice and video) can tolerate loss, consecutive losses can lead to a
degradation in the quality of service. Thus even an optimal memoryless policy
may be imperfect in practice. The proper formulation is to minimize the effective
bandwidth subject to a quality of service constraint, which might reflect the sensi-
tivity of the source to losses. For example, recent detailed studies for variable bit
rate video traffic consider the dynamics of loss and traffic policing schemes,
see Reininger and Raychaudhuri [32]. In particular, a coder may adapt the level
of quantization when the traffic rate exceeds a threshold, and thereby improve
the overall performance, while maintaining the traffic within negotiated rate
constraints.

We complete this discussion of admission policies with an insightful example
suggested by Courcoubetis and Weber [9]. Consider a stationary Gaussian arrival
process, {A4,} with mean y, and finite asymptotic variability
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ngxgq Z Var (Z A )
In this case one can show that the effective bandwidth of the source is given by

@A(5)=#+g-

We will denote the spectral density of the arrival process by A(f)=
S oo €™ R(n) where R(n) = Cov (A;,A;iy,) is the covariance function, and
note that in fact A4(0) = o°. It is reasonable to consider filtering the source in order
to reduce loss. In fact, we will consider all filters H(f) with the same dc gain,
H(0) =G < 1, so that the throughput Gu is a fraction of the mean arrival
rate. The spectrum of the output process will be D(f) = |H(f)|*PA(f) and an
asymptotic variability D(0) = [H(0)[*4(0) = G*¢*. For a fixed dc gain, the
effective bandwidth of the output process,

s®
C!D((S) = Gﬂ-“"‘ Gz 7,

is independent of the filter. Intuitively, large buffer asymptotics correspond to
averaging over long periods of time, which in turn supersede the smoothing effect
of the filter. Note however, that by choosing to reject a fraction of the input
traffic, in some cases a significant (almost quadratic) reduction of the effective band-
width can be obtained. One would expect these conclusions to be approximately
true for non-Gaussian sources. Berger and Whitt [3] come to similar conclusions
for the popular leaky bucket scheme, showing that asymptotic variability of the out-
put traffic stream depends only on the total capacity of the system, i.e., what is lost,
rather than the relative size of the job versus the token buffer. A further study by de
Veciana et al. [11, 10] characterizes the effective bandwidth at the output process
from such devices showing that though this second order property is invariant
the effective bandwidth as a whole is in fact modified.

5. Heavy traffic approximations

Heavy traffic approximations provide further approximate effective band-
width results for the mean workload and tail distribution as well as some additional
insight.

In their study of dependenc1es in packet queues Fendick et al. [19, 20] con-
sider superpositions of Poisson streams with batch arrivals. In particular suppose
that a traffic stream in class j € J consists of batch arrivals with mean m; and
squared coefficient of variation Cb; at rate v;; the packet service times are i.i.d.
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with mean yi; and squared coefficient of variation cfj. Service is provided by a single
server with a first-come first-serve discipline. In this case one can show the mean
workload in the system is

D myy (g ¢+ mPp(ck; + 1))

_Jed
2(1 -3, ”f”jmﬂ*"j)

el

ED

As in section 2, by rearranging terms in the constraint ED < d, the effective band-
width of a batch arrival stream subject to a mean delay before service less than d can
be defined:

1
D moy(d) <1, where a;(d) =y {mjﬂj + 57 (447 €55 + mif i (c; + 1))] i
jed

One might ask if this result generalizes when the arrivals are not Poisson but
renewal, the batches are not instantaneous but spaced, or if the inter-arrival
spacing and batches are dependent. These cases have been analyzed in the heavy
traffic regime by Fendick and Whitt [19]. Their results give approximate effective
bandwidths for superpositions of such streams subject to a mean delay con-
straint. A more complete discussion of heavy traffic approximations in this context
can be found in Whitt [34].

For illustrative purposes let us further consider the heavy traffic approxima-
tion to a discrete-time multi-class deterministic queue with service rate c. Suppose
packets in a stream of a given class j € J, have stationary arrivals {4;}, with
mean ;. Let 4] , denote the cumulative arrivals up to time 7, and suppose the
arrival process satisfies a central limit theorem such that n~/ E[Ai',m — pint] —
N(O,crf . Consider scaling the net input X,, as X,/ such that
2 jesmil —c=afy/n. In the limit, as n — oo, the scaled workload converges
weakly to a regulated Brownian motion with mean drift o and variance

0'2 = Zje_;njaf, so that

Xy
/n

In this regime Harrison’s [24] results for regulated Brownian flows apply. When
a < 0, the steady state distribution of the workload, denoted by the random
variable W, is exponential with mean

L% oB, + at.
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2
E:W@

1 jeJS
—=EW =——":
A 2| |
Thus, when the system operates in heavy traffic, using the fact that
Ji=a/[ S jernp — €| we can unravel our scaling to find that

X, ~oB,+ [anpj - c] t.

jeld

By imposing a tail constraint on the exponentially distributed workload for the
unscaled process, P(W > B) < exp [-6B], we obtain the following approximate
requirement:

an[ﬂj‘i“é—;j‘:] <c.

jed

This expression corresponds to a second order version of our original effective band-
width result for tail constraints, see corollary 3.1. Indeed, if the effective bandwidths
are differentiable, as will be the case if the arrival rates are bounded, then

L 4 50_? 2
anaj(ﬁ)man “J+T +O(5 ),
j=1 j=1

where u; = Edj, and JJ? — lim, _ ot~ Var (A{‘,) are the mean and asymptotic
variability of the arrival streams. This result is of course exact for Gaussian
processes. It is tempting to use simple second order approximations if the errors
introduced are insignificant. This issue must however be addressed via simulation.
As in previous cases, the precision of this bound will depend on the types of sources
and the load on the system.

The explicit results for buffered Brownian flows give us a unique opportunity
to investigate the effective bandwidth concept for finite storage systems. As
above, we suppose the net input can be modeled as a Brownian flow with drift
p=3jesrnand variance o> = 3 _jes njoj?. In this case the mean workload EW
is given by

i B

EW = -2 :
B 1~ exp [—2aB/c?]

(see Harrison [24, p. 90]). Although a and o2 are linear in the number of sources, the
presence of an exponential nonlinearity couples the traffic streams for finite buffers.
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As B — oo, for @ < 0 we find an effective bandwidth result for a mean workload
constraint of the form EW < d. Specifically,

2
Zﬂij(d)Si, where Q;(d):ﬂj-’—;_;”

jel

which is analogous to the results discussed in section 2.
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